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Loss Increases in Multimode Rectangular
Infrared Waveguides Due to Helical
Deformations

MICHEL E. MARHIC, MEMBER, 1EEE

Abstract —The coupling coefficients for all TE,, and TM,,, modes of
multimode rectangular waveguides, caused by elementary rotations about
the three axes of symmetry, are calculated in the microwave approxima-
tion. The modes b coupled to a common mode a by these independent
rotations form three nonoverlapping families. Furthermore, if a deforma-
tion consisting of no more than two of these rotations is considered, none
of the modes b are coupled to each other by that deformation. These
properties lead, in the case of mild deformations, to the formulation of a
multimode coupling theory which shows that the loss increase due to such
deformations can then be viewed as the result of muitiple two-mode
coupling, Explicit formulas are derived for the loss increase of TE ;¢ due to
mild circular bending. Qualitative features of twists and helical deforma-
tions are also brought out.

I. INTRODUCTION

MODE-COUPLING analysis of the bending losses

in infrared metallic waveguides was recently intro-
duced [1]. The method was used in particular to explain the
high bénding losses observed in practice with circular
metallic waveguides at A =10.6 pm [2]. Some preliminary
calculations were also carried out for slab waveguides,
based upon the expression for the self-coupling coefficient
of individual modes [3], but they were very limited because
of the lack of general expressions for the coupling coeffi-
cients for all pairs of modes. )

In this paper we examine in detail the change in loss for
rectangular infrared metallic waveguides subjected to either
circular bends or twists, by calculating all possible coupling
coefficients between pairs of modes introduced by these
deformations. The calculations are made under the as-
sumption that the modes of the straight guide are the
standard TE, and TM . modes of microwave theory; this
is a very good approximation in the far-infrared. and
appears to be fairly accurate even in the mid-infrared [1],
[2]. Microwave formulas are also used for the straight guide
mode losses, although there is some doubt as to the appli-
cability of some of them in the mid-infrared [4].[5).! In the
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IAccurate calculations cannot be carried out for coupling to other than
TE . which are the only modes for which reliable expressions for « exist.
As was shown experimentally, standard expressions derived from micro-
wave theory cannot be used at A= 10.6 pm.

case of a circular y-bend, it is shown that a TE,, mode
couples only to TE,,, modes of opposite parity, and pri-
marily to its nearest neighbors; in particular TE,, couples
primarily to TE,,, as previously assumed [1]. It is also
shown that the TE,, (p>1) loss is slightly reduced by
y-bends, as proven differently by others [6], [7]. In the case
of a twist, TE modes are found to couple to TE and TM
modes of opposite parity; the excess loss varies quadrati-
cally with the twist rate. Finally, the case of simultaneous
bending and twisting, i.e., of helical deformation, is ex-
amined.

It is found repeatedly in this study that there are im-
portant situations which cannot be studied by a simple
two-mode coupling analysis, because the energy of a par-
ticular mode may be coupled to two or more other modes
simultaneously, and at about the same rate. To study these
situations a multimode coupling analysis is introduced,
which yields a tractable formalism for small deformations.
The results, however, do not account for the loss increase
in the presence of substantial deformation, as encountered
in the whispering gallery regime [6].

Besides providing powerful analytic tools to study the
effect of deformations on multimode metallic waveguides,
this work points to the fact that mode coupling is indeed
intimately connected with even mild deformations of such
guides, and that mode conversion in such situations cannot
be dismissed on the basis of approximate criteria [8]. [9].
but must in fact be studied by the type of method pre-
sented here and elsewhere [1].

II. CIRCULAR BENDS

Consider the rectangular guide of Fig. 1. Such a guide
can be deformed slightly by a circular bend of large radius
R around an arbitrary direction in the x—y plane. Such
general bends can, as we shall prove, be decomposed into
appropriate combinations of circular bends around the x-
or y-axis. We will first analyze in detail the case of a y-axis
bend (hereafter referred to as a y-bend), and then deduce
the results for an x-bend by analogy; the case of the
general circular bend will then be examined.

The coupling coefficients between two modes a and b
induced by a circular bend of radius R can be calculated in
a manner analogous to that used for the self-coupling
coefficient [3], [10]. Starting with a straight guide, (Fig. 2) it
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Fig. 1 Coordinate system for the rectangular guide. This choice yields

the simplest expressions for the fields used to calculate the coupling
coefficients. The origin will later on be moved to the center of the guide
to obtain symmetric figures, a fact which will have no effect on the
quantities then being discussed.

Fig 2. Circular bend as the limit of tilted straight segments

is decomposed into segments of length /, tilted with respect
to each other by a small angle 8, and one then lets § and /
go to zero in such a way that

R= lim (1/8). (1)

In that case, if K, ,,(8) is the coupling coefficient be-
tween the two modes ¢ and b due to a single tilt of angle §,
the coupling coefficient for the same modes per unit length
of the corresponding circular bend of radius R is

Ca,h: [,lgrilo [l_lKa.h(S)]‘ (2)

In multimode hollow waveguides with high index walls,
the coupling coefficient K, , due to a discontinuity is, to a
good degree of approximation, given by the overlap in-

tegral [1]
[ [E:-E,as
K,,= (3)

b [[/(Ea)zds]m[f/(E,,fds]l/z

where ds = dx dy and the integrals are calculated over the
cross section of the guide after the discontinuity: E ! is the
transverse electric field distribution of mode a propagating
in the first section, in the coordinate system (x, y) of the
second section; E and E,, are the transverse field distribu-
tions of modes a and b in the second section. In the present
case of the discontinuity being a small angle § around the
y-axis, we have

E/ ~E exp [1_27r8x]‘ (4)

A

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 5, MAY 1982

TABLEI
COEFFICIENTS F,C, ;, FOR CIRCULAR y-BENDS

b P4 Pq
2,2 2 2 2
TE . 2pp'" . g (p+p') Pq(p' =p_)
LA 2 2 bw
w b
2, .2 2
g'g(p_z-g‘zz pp' (BB + 245
™ , 2 2
p'.q bw w b

Our primary interest here is to study the effect of
waveguide deformations upon the TE,, modes, but we will
nevertheless evaluate the coupling coefficients for all pairs
of TE and TM modes. The relations necessary to carry out
the calculations are given in the Appendix. Table I lists the
expressions for the coupling coefficients C, , multiplied by
the function

w
k= @q,p’q'(ﬁ)

2 2\ /20 n\1/2
LT ,2)2(1)_+q_) (P L4 ) AR

w
(5)

The selection rules are that a y-bend couples only modes
with ¢ = ¢’, and that p and p’ must have opposite parity.
Failure to satisfy these conditions leads to a vanishing
coupling coefficient (to first order in R™!). One exception
to this rule is the case of self-coupling for which K, ,=1—
O(R™?%), which must be recalculated separately. This is
done with the help of (39) in the Appendix. It is found that

55
2 2 2 2
K, u(8)| =1— | el L (2]
4
w2 b2
—for TE, +forTM (6)
from which it is meaningless to calculate C, , from (2).

This result can be related to the expression for the quantity
B given in the appendix of {3], and it is found that the sign
convention for TE and TM modes presented there con-
tradicts (6). A check on the present choice of signs is
obtained by verifying the consistency of (6) with the ex-
pressions of Table 1. This is done by expressing that ail the
power incident on a tilt in a mode g must emerge from it as
the sum of the powers coupled into all other modes b,
including « itself. Thus we must have, to second order in 8,

2 |Ka,b|2+|Ka,a|2:1‘ (7)
b#*a

This relation has not been proven in general, but it has
been verified numerically for mode a being TE,;, thus
validating the choice of signs in (6).

In a rectangular metallic guide with 5> w, the least
attenuated mode is TE y, and the whole family of TE,,
modes has generally lower losses than the other TE modes
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TABLE II
VALUES OF G(p, p")
pl
1 2 3 4 5 6
P

1 0.889 0 0.071 0 0.019
2 0.889 0.96 0 0.091 0
3 0 0.96 0.979 0 0.099
4 0.071 0 0.979 0.988 0
5 0 0.091 0 0.988 ‘ 0.992
6 0.019 0 0.099 0 0.992

and the TM modes. The TE,,, modes, and especially TE,,,
are therefore preferred for low-loss transmission in such
guides, and it is important to determine how their losses
are affected by deformations. For a y-bend, Table I and
the associated selection rules show that the TE ,, modes are
only coupled to each other, the coupling coefficient be-
tween TE ,, and TE ., being given by

’

16 pp w
Goo=TF T —33r: PP (8)
P0,p0 2\2
II (p?—p?) AR
For a given p, this coupling coefficient is largest for
p’ = p, a fact put in evidence by Table II in which values of

Negq— PP I w /
C(p’p)'—“'(pl—p,z)z CpO,p’()4 AR’ P7&P

(9)
have been calculated for low values of p and p’ (the value 0
is assigned when the parity rule is violated). For large n, it
can be shown that

G(p,p=n)=n? (10)

so that an arbitrary TE ,, mode is primarily coupled to its
two nearest neighbors, TE,, ., ; o; this property even extends
to low values of p, as can be seen from Table II. The
situation is even simpler for TE,, as it is primarily coupled
to a single other mode, namely TE,,. This finding justifies
the assumption which was made elsewhere about the cou-
pling of TE ,, by a y-bend [1]. Having now at our disposal a
more accurate expression for Cyq 5y, We can reevaluate the
critical bending radius for y-axis bending for TE,, [1]; we
now obtain
w3

Rc:0.83?.

(11)

The numerical coefficient in this expression is close to
the value 1.18 which can be extrapolated from exact
numerical calculations [6] or obtained by a perturbation
technique [7}; it is closer than 4.6 or 0.61 arrived at by
other methods ([11] and [9], respectively). The two-mode
coupling approximation thus provides a satisfactory de-
scription of the additional loss suffered by the TE,, mode
in a rectangular guide gently bent around the y-axis.

The expressions of Table I can also be used to similarly
study the influence of a y-bend on the losses of higher
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order TE ,, modes ( p >2). For such a mode, however, we
can no longer use the standard two-mode coupling theory
[1], since we have shown that TE ,, couples almost identi-
cally to TE, ,  and TE, , ,. We must, therefore, consider
a three-mode coupling scheme wherein a mode of interest a
is coupled to two modes b and ¢ via the coupling coeffi-
cients C, , and C, ,, respectively; these last two modes,
however are not coupled to each other, i.e., C, .=0. This
coupling scheme is similar to that studied by Solymar [12].
In fact, we will look at this situation as a particular case
(N=3) of the more general N-mode coupling scheme
where mode of interest 1 couples to modes 2,3,---,N,
while the latter modes are not coupled to each other. In
that general case the determinant equation for y, the
complex propagation constant of the eigenmodes of the

deformed guide, is

YN i€y iC 3 oreee iCyn
iCly Y% 0 +vv - 0
i3 0 vy—m =0
. : 0
iCiy  0-e-n 0 y—vy
(12)
where vy, (i=1,---,N) is the propagation constant of the

ith mode of the straight guide. Equation (12) is equivalent
to

N N

‘kgz(cl,,f(y — %) ~I=Il (y—v)=0
(13)

1+(Y_71)‘

or

N
2 -1
“7n= 2 (Cl,k) (ve—7v) (14)
k=2

In the case of mild deformations, we would expect the N
roots of this equation, which we denote by v,, to differ very
little from their respective values for the straight guide, v,;

hence we let
=v,+§, (15)
where |6, <|v,|. With that assumption we can calculate
each §, as a small perturbation. For mode 1 in particular,

welety—v,=y;—¥y :Sl,and
%Y= NHT 6=y (16)
which leads to
N
&= 2 (Cl,k)z(yk_Yl)_" (17)
k=2

This result says that the change in propagation constant
of a mode of interest 1 due to a waveguide distortion which
couples 1 to modes 2,- - -, N, but does not couple the latter
to each other, is obtained by summing the contributions
due to 1 coupling to the other modes on an individual
basis. This derivation does not specify the type of deforma-
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tion, only that it is mild, and will be used later for circular
bends, twists, and certain helical deformations.

Coming back to the three-mode coupling case intro-
duced earlier, we find that the change in attenuation for
mode of interest 1, which is the real part of §,, is

Re(5,) = (CI,E)ZAO‘Z.I . (CI;)ZAa“ :
(A"‘z.l)h_"(ABz,l) (Aa3.1) +(A33,1)
(18)
where
v, =a,+ip,
Ae, =a, —ay
AB],kZIBJ_Bk' (19)
Similarly, the change in phase constant is
tm(8,) = —\C1a) 8Bu (CLaV 8By
(Aaz,l) +(A132,1)‘ (Aa3,1) +(A:33,1)
(20)

With modes 1, 2, and 3 corresponding to TE . TE, . | o,
and TE,_, ,, respectively, we find, using Table I and the
propagation constants in Appendix I, that

i 7 w6
o= Re(tjo) = L A )z | C10)
where
7| (p+1)’ (p—1)
A(p)zﬁ e it p=1,2.3,---.
(“E) ( ‘5)
(21b)

Equation (21) happens to hold for p =1 because the second
term of A( p) vanishes and the two-mode coupling expres-
sion appropriate for that mode is recovered. Similarly, it is
found that

2 4 W4
o= (o) = o] 1+ ZAL | ()

The range of validity of (21a) and (22) corresponds to R
being sufficiently large to avoid transition to the whisper-
ing gallery regime [5], i.e., R = 8w?/A2p2.

Calculation of a few values of A(p) shows that only
TE,, cxperiences an increase in both a and 3, whereas all
higher order modes experience reductions, the magnitudes
of which increase as p gets larger. These conclusions are in
qualitative agreement with the work of others [6], [7]. The
three-mode coupling analysis provides an insight into the
origin of the increase or decrease in loss due to a slight
y-bend. TE,, is coupled to lossier TE,,, and its loss can
only go up; on the other hand, for p>2, TE , couples to
both lossier TE | ; and less lossy TE,_ o, in such a way
that it experiences an overall decrease in loss.

Equations (21) and (22) can also be quantitatively com-

TABLE III
COEFFICIENTS F,C, , FOR CIRCULAR x-BENDS
a
TE ™
b Pq Pq
2,2 2,2 2 2
TE 297q"° ., P47 *q'7) 4p(q'"- q°)
pq’ b2' w2 wb
2,2 P
2.2 '
™ a'p(a°= g'% ' (G + 2 )
wb b w

pared to similar expressions found in [6]. Rewritten in the
present notations, these become

. w
o= apo{l +2B(p) }\4R2] (23a)
2 4
, P’B(p) w
ﬁpO - Bp()[l + 8 A2R2 (23b)
where

4 15
B(p)=—— —1, =1,2,3,---. (2
(p) 3p4(p2H2 ) 2 (23¢)

As mentioned earlier, the signs of A(p) and B(p) are
the same for all values of p. Further investigation shows
that, although these two functions do not look anything
like each other, the ratio A(p)/B(p) is within 1.5 percent
of unity for all values of p. It follows that the changes in
the phase constants given by the two methods (22) and
(23b) agree very well; on the other hand, the mode-cou-
pling method predicts a change in losses due to bending,
(21a), which is just about half that predicted by the per-
turbation technique, (23a), which itself agrees with accurate
numerical calculations [6]. Interestingly enough, the dis-
crepancy is independent of any physical parameters, in-
cluding the index of refraction of the wall. This implies
that it remains even in the microwave region where the
usual expressions for the TE modes, used here to derive the
coupling coefficients, should constitute excellent approxi-
mations. The origin of the difficulty has been traced to the
standard mode-coupling formulation where it is assumed
that C is real [1], [3], [12]-[14]. In fact C has a small
imaginary part which leads to a doubling of the bending
losses, in agreement with the other theories. Since this more
accurate calculation requires extensive modifications to the
present formalism, it will be presented elsewhere.

The coupling coefficients for circular x-bends can be
deduced from those for y-bends by exchanging p with ¢q, p’
with ¢’, and w with b. The resulting expressions of F.C, ,
are listed in Table III, where

b I 22
Fx:qu‘q’p’(ﬁ) :g(qzqu)

2 2\ 1/20 2 2\ 1/2
q° . p q )4 AR
(E ) Sz () e

The associated selection rules are that p = p’, and that ¢
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<\

Fig. 3. Geometry for studying bending around an arbitrary direction ¥
in the x— y plane. The parallel lines are equiphase lines for f n (25).

and ¢’ must have opposite parity. In particular, these rules
indicate that an x-bend will couple TE,;, to TE,;, TE;,
etc., as well as to TM,;, TM,;, etc. Even the first terms in
these families, TE;; and TM,;, are far lossier than the
low-order TE ,, modes that were excited by a y-bend, and
this therefore indicates that an x-bend is going to be far
more dangerous for the TE,, mode than a y-bend of
identical radius.

Consider now a general circular bend around an arbi-
trary direction in the x— y plane. The coupling coefficients
for such a bend can be calculated by the tilt method
utilized earlier, but with the exponential term in (4) re-

placed by
(22 —ep| Bsxren] @)

which indicates that the bend (tilt) considered is around
the direction parallel to the vector V of components V, = £
and ¥V, = — 8. The coupling coefficients are then obtained

from (3), and the coupling coefficients per unit length of
bend by

C,,= i I"'k, (8, 26
a.b 5,551}»0[ sl 5)] (26)
the limit being taken subject to the conditions

!l _ . _ R l_, R

5 R T s ¢ and I R.= sing (27)

where R is the total radius of the bend around ¥ with the
x-axis (Fig. 3). For a#b,C, , is of order R™'. Expanding f
to the same order and carrying out the calculation of C, ,,
it is found that the latter is simply the sum of two separate
contributions, respectively, due to a y-bend of radius R,
and an x-bend of radius R, . Since the selection rules for x-
and y-bends are mutually exclusive, it is clear that the x
and y components of a general circular bend respectively
couple any TE,, or TM,,, mode to two distinct, nonover-
lapping, families of modes. Hence, each coupling coeffi-
cient is either a coefficient obtained from Table I, or from
Table III, or it vanishes. Thus, one really never has to add
two different coefficients, but merely to choose the ap-
propriate coefficient in the tables. This implies that when
calculating the extra loss of a TE,, or TM,,, mode due to a
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general circular bend, as obtained from (17), we find
-2 -2
Re(8,,)=4,,(R,) “+B,(R,)
= (qucoszxp + qusinzqh)R“2 (28)

where 4,, and B, are constants which depend on the
mode under study. Even though it is, in general, difficult to
calculate these coefficients explicitly, some simple conclu-
sions can be drawn from the form of (28). In particular, we
can compare the effect of ¢ upon bends of given R. It is
clear that if A,,<B,, the least attenuated bend will be
obtained for ¢ =0, i.e., for a y-bend; conversely an x-bend
will yield minimum attenuation if 4,,> B, . 1f 4,,= B, ,
the excess loss will be independent of ¢. In the case of
TEq, 4, results primarily from coupling to TE,,, whereas
B,, is mostly due to coupling to the lossier modes TE,, and
TM,,, so that B,>A4,,, and a y-bend is necessary to .
minimize the losses for a given bend radius R. This is a
fortunate result since rectangular metallic waveguides de-
signed for low-loss transmission of infrared radiation have
b>w and thus strongly resist being bent around the x-axis
for mechanical reasons. This lack of flexibility in one
direction, which might be viewed as a hindrance from a
purely mechanical standpoint, thus turns out to be a bless-
ing in disguise: it provides a natural resistance to the
higher losses which would otherwise be associated with
x-bends.

III. Twists

Another situation where modes are coupled with con-
stant coupling coefficient per umnit length is the case where
the z-axis of the guide remains straight, but its cross
section rotates at a constant angular rate per unit length 7
along that axis, giving the guide the appearance of a
corkscrew; we refer to this deformation as a twist. We can
calculate the coupling coefficients per unit length of twist
by approximating this structure by a series of straight
sections of length / rotated by a small angle e with Tespect
to each other, calculating the coupling coefficient K, ,(¢)
between two such sections from (3) and taking the ap-
propriate limit subject to € // = 7. Specifically, the field E,j
of mode a propagating in one section is related to the field
of the same mode in the next section E, by a rotation of
angle ¢ around the z-axis (Fig. 4). In other words

(ED). (E.).
(E2), (E.),

:[ cos e
—sine

. (9)

sine]
COS €

Hence ,
ff]::;~5bdx dy
o =cose [[(B)(Ey),+(E,),(E,),] dxdy

+sine [ [[(E,)(E,),~(E,),(E,),] dedy
~ef [[(E).(Ey), ~(E),(E,)]dxdy  (30)
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]

Fig 4. Geometry to calculate the coupling coefficients resulting from a
twist around the z-axis. The primed and unprimed coordinate systems
correspond to the waveguide sections before and after the discontinuity,
respectively.

TABLEIV
COEFFICIENTS LC, , FOR TWISTS AROUND THE z-AXIS

’ T
TE ™
b Pq Pa
TE 2,2 2,2 ' a2
p'q’ pq'" - q'p’ (— + —3)pawb
w b
[
™ 2 2
'’ G+ L) p'g'wh 0
w

since the coefficient of cose vanishes by orthogonality of
modes a and b (we do not calculate the self-coupling
coefficient here, i.e., a#b). Using (30) in (3), and the
appropriate expressions from the Appendix, the coupling
coefficients per unit length are obtained by

C,p= lim [I7'k, ()], e/I=1. (31)
’ €, /-0 ’
The results are listed in Table IV in the form of the
product LC, ,, where the function L is defined by

. _H2 p2 q2 p:2 qu
L—qu_p/q/(’r)——i—g(:v—z+§ ‘w—2—+'b—2

-(pz—p’z)(fI’z—qz)WTb- (32)
The selection rules are that p and p” must be of opposite
parity, and that ¢ and ¢’ must also be of opposite parity.
These rules are not as restrictive as in the case of circular
bends, and as a result it is difficult to look at this situation
as a two- or three-mode coupling scheme because of the
large number of TE and TM modes being coupled to. Even
for TE, it is difficult to ascertain which modes make the
largest contributions to the increase in loss.

- We can nevertheless draw some qualitative conclusions
about twists. Since all the coupling coefficients are propor-
tional to 7, (17) shows that the increase in loss due to a
twist is proportional to 72; this quadratic behavior has
been observed in practice [15]. A general feature of mode-
coupling theory is that in the limit of weak coupling the
eigenmodes of the perturbed guide are very similar in
structure to those of the straight guide. For a twisted
rectangular guide, this means that the eigenmode close to
TE |, will be very similar to the latter, with the electric

vector nearly parallel to the long side of the guide cross
section at any location along z; in other words, the direc-
tion of the electric field will rotate at the same rate as the
guide. This property has also been observed experimentally
[15].

IV. HEeLicAL DEFORMATIONS

Thus far we have considered separately circular bends
and twists which may occur in the course of the utilization
of flexible rectangular metallic waveguides for the infrared.
We now study deformations which are combinations of
circular bends and twists, namely helical deformations, for
which the mode-coupling coefficients are simply the sum of
those attached to the elementary deformations [16], which
have been calculated in the preceding sections. For a guide
with b>> w, we have seen that x-bends are undesirable, and
also difficult to obtain in practice, and we therefore now
restrict the discussion to structures obtained with y-bends
and twists only, which we refer to as a natural helical
deformation (Fig. 5).

For such a helical structure, then, the mode-coupling
coefficients C, , are obtained by summing the elements of
Tables I and IV, where R and 7 now take on the signifi-
cance of the radius of curvature and the torsion of the
helix, respectively. These are related to the parameters d
and e of the helix (Fig. 5) by
_d*+e? e
=T and 7= m .

Since the selection rules associated with Tables I and IV
are incompatible, the coupling coefficient due to a helical
deformation for any mode a to any other mode b # a can
simply be read from one of these tables, and is never the
sum of two nonvanishing terms, one from each table.
According to (17) and this remark, then, the increase in
loss Re(8,) of any mode 1 due to a helical deformation can
be put in the form

Re(8,)=CR™>+Dr?=CR 1+ E(Rr)"] (34)

where C, D, and E=D/C are constants related to the
characteristics of the coupled modes. Thus we conclude
that, for a natural helical deformation, the loss increase is
the sum of terms proportional to the squares of the curva-
ture and the torsion, in agreement with the dependence
proposed by other workers [8]. The form of this equation is
also interesting in that it says that the excess loss of the
helical guide is that of the same guide with a circular bend
only (CR™?), times a factor of the form 1+ E(Rr)2. This
statement is virtually identical to that made for helical
whispering gallery guides in a study where the significance
of the dimensionless quantity Rt was brought out [17], and
where it was found that £ =1 for TE polarized waves in
metallic guides in the infrared. Due to the large number of
modes involved in the mode-coupling description, and to
the uncertain expressions for their losses, it is not possible
to derive similarly simple expressions in the present con-
text, even for TE,,,.

R (3)
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(2)

e
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R ) NS
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Fig. 5. Natural helical bend of a rectangular guide. (a) General view;
the zg-axis is along the axis of the helix. (b) Side view of the helix,

defining d and e.

V. DiscussioN

The influence of helical deformations upon the losses of

the eigenmodes of rectangular metallic waveguides has

been studied by means of multimode coupling theory. Such
deformations result from the combination of elementary
rotations about the local x, y, and z axes of the guide. The

_ coupling coefficients between all propagating straight guidé
modes due to these individual orthogonal rotations have
been calculated, and the corresponding selection rules indi-
cate that the following remarkable properties hold.

1) Any particular mode a is coupled by the three types of
‘orthogonal rotations to three distinct, nonoverlapping,
families of modes b. Thus, in the case of an arbitrary
helical deformation, the coupling coefficient between two
particular modes ¢.and b is not ‘a linear combination of
three nonzero coupling coefficients, but reduces to just one
of them.

2) If a mode a is coupled to two modes b and ¢ by an
elementary rotation about one of the three axes, then b and
¢ themselves are not coupled by that rotation. This. prop-
erty is-also valid for coupling by deformations composed of
elementary rotations about two orthogonal axes, as en-
countered in general circular bends and natural helical
deformations. It can readily be seen by comparing the
selection rules, however, that this does not hold for defor-
mations made up of all thre¢ elementary rotations. For
general helical deformations, then, one could not use (12)—
7).

When applicable, these properties greatly facilitate the
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calculation of excess loss of modes due to helical deforma-

tions. Property 2) shows that we are then in the conditions

of applicability of the simple multimode coupling theory
developed here to deal with situations which cannot be
adequately covered by the usual two-mode coupling the-
ory, so that the excess loss can simply be obtained from
(17). Property 1) then simplifies this calculation since the

_various coupling coefficients entering (17) can simply be

read from Tables I, III, or IV without further combination.
This method can lead to expressions for the excess loss
whenever accurate formulas exist for the losses of the
principal modes being coupled by the deformation. This is

~ the case for TE,, modes in a guide deformed by a y-bend

only, and we have derived approximate analytic expres-
sions for the excess loss in this situation and compared
them to other published expressions. We could not, how-
ever, carry out similarly detailed -calculations for natural
helical deformations, because of lack of accuracy of the
attenuation constants of some of the prominent modes;
progress in this direction will thus require refinements of

the calculations of the attenuation constants of TE ,, (¢ > 0)

- and TM,,, modes of straight rectangular infrared. guides.

Nevertheless, properties 1) and 2) allowed us to study
qualitatively the excess loss under natural helical deforma-
tions and general circular bending; in the latter case it was -

found that, for typical infrared waveguide configurations,

minimum excess loss is fortunately obta,med by mechani-
cally favored deformations.

This study furthers the understanding of the effect of
deformations on the losses of multimode rectangular
metallic waveguides. Although the primary incentive for
this work was the development of hollow guides for CO,
laser radiation, the results presented here should find ap-
plications throughout the rapidly developing mid-infrared,
far-infrared, and submillimeter regions of the electromag-
netic spectrum.
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APPENDIX
Transverse electric fields in rectangular guides:
TE ‘
rq
EXZ%COSE%{SinQ%l,‘. p=0,1,2,---,
o pll g pllx qlly ~
Ey— ” sin ” cos b g=0,1,2,--+,
p#q=0 (35)
TMP‘I )
EXZP—MI;I“COSP sm—q%, =1,2,---,
_qll . plix glly )
E,= 5 sin ST =1,2, (36?
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Useful integrals (low-ordér expansions in powers of u =

oa/A)
n#Fm
a allt . mlIlt i2llot
v Lo)= i i 37
I(n,m,a,0) fosm ——sin——e— dt (37)
2%17———%—214, if n, m of opposite parity
L (n2—m?)
=0(u?), if n, mof same parity
a  pllt mllt i21let
J(n,m,a,o)—-[()cos L CosT —e—y dt (38)
4a n*+m? . . )
T Lo if n, m of opposite parity
L (n?—m?)
=0(u?),  ifn, mof same parity.
n=m
i2Hu_1 n2

a e
2 i21Tu nz—uz

I(n,n,a,0)=
a 1 2H2 2 .
—E[l+(;13 T)u +1Hu}. (39)

Propagation constants (b, w > A):
TE,,

sz?\)

p2>\2 . )
Ypo:“po+13po:?vt)_3Re(” )‘H(ﬁo - 4w’

(40)

where » is the index of refraction of the wall, 8, =2II /A,
and A is the freespace wavelength.
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