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,4Mruct —The coupling coefficients for all TEPq and TMPq modes of

multimode rectangular waveguides, caused by elementary rotations about

the three axes of symmetry, are calculated in the microwave approxima-

tion. The modes b coupled to a common mode a by these independent

rotations form three nonoverlapping families. Furthermorej if a deforma-

tion consisting of no more than two of these rotations is considered, none

of the modes b are coupled to each other by that deformation. These

properties lead, in the case of mild deformations, to the formulation of a

multimode coupling theory which shows that the loss increase due to such

deformations can then be viewed as the result of multiple two-mode

coupling. Explicit formulas are derived for the loss increase of TEPO due to

mild circular bending. Qualitative features of twists and helical deforma-

tions are also brought out.

I. INTRODUCTION

A MODE-COUPLING analysis of the bending losses

in infrared metallic waveguides was recently intro-

duced [1]. The method was used in particular to explain the

high b~nding losses observed in practice with circular

metallic waveguides at A = 10.6 pm [2]. Some preliminary

calculations were also carried out for slab waveguides,

based upon the expression for the self-coupling coefficient

of individual modes [3], but they were very limited because

of the lack of general expressions for the coupling coeffi-

cients for all pairs of modes.

In this paper we examine in detail the change in loss for

rectangular infrared metallic waveguides subjected to either

circular bends or twists, by calculating all possible coupling

coefficients between pairs of modes introduced by these

deformations. The calculations are made under the as-

sumption that the modes of the straight guide are the

standard TEP~ and TMP ~ modes of microwave theory; this

is a very good approximation in the far-infrared, and

appears to be fairly accurate even in the mid-infrared [1],

[2]. Microwave formulas are also used for the straight guide

mode losses, although there is some doubt as to the appli-

cability y of some of them in the mid-infrared [4], [5]. i In the
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‘Accurate calculations camiot be carried out for coupling to other than
TEPO, which are the only modes for which relijtble expressions for a exist.

As was shown experimentally, standard expressions derived from micro-
wave theory cannot be used at A = 10.6 pm.

case of a circular y-bend, it is shown that a TE~O mode

couples only to T&P,o modes of opposite p~ity, “and Pri-

marily to its nearest neighbors; in particular TE,0 couples

primarily to TE20, as previously assumed [11.It is also
shown that the TEPO (P> 1) 10SS is slightly reduced @

y-bends, as proven differently by others [6], [7]. In the case

of a twist, TE modes are found to couple to TE and TM
modes of opposite parity; the excess loss varies quadrati-

cally with the twist rate. Finally, the case of simultaneous

bending and twisting, i.e., of helical deformation, is ex-

amined.

It is found repeatedly in this study that there are im-

portant situations which cannot be studied by a simple

two-mode coupling analysis, because the energy of a par-

ticular mode may be coupled to two or more other modes

simultaneously, and at about the same rate. To study these

situations a multimode coupling analysis is introduced,

which yields a tractable formalism for small deformations.

The results, however, do not account for the loss increase

in the presence of substantial deformation, as encountered

in the whispering gallery regime [6].

Besides providing powerful analytic tools to study the

effect of deformations on multimode metallic waveguides,

this work points to the fact that mode coupling is indeed

intimately connected with even mild deformations of such

guides, and that mode conversion in such situations cannot

be dismissed on the basis of approximate criteria [8], [9],

but must in fact be studied by the type of method pre-

sented here and elsewhere [1].

II. CIRCULAR BENDS

Consider the rectangular guide of Fig. 1. Such a guide

can be deformed slightly by a circular bend of large radius

R around an arbitrary direction in the x-y plane. Such

general bends can, as we shall prove, be decomposed into

appropriate combinations of circular bends around the x-

or y-axis. We will first analyze in detail the case of a’y-axis

bend (hereafter referred to as a y-bend), and then deduce

the results for an x-bend by analogy; the case of the

general circular bend will then be examined.

The coupling coefficients between two modes a and b

induced by a circular bend of radius R can be calculated in

a manner analogous to that used for the self-coupling

coefficient [3], [10]. Starting with a straight guide, (Fig. 2) it
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Fig, 1 Coordinate system for the rectangular gmde. This choice yields

the simplest expressions for the fields used to calculate the coupling
coefficients, The origin will later on be moved to the center of the guide

to obtain symmetric figures, a fact whch will have no effect on the
quantities then being discussed.

Fig 2. Circular bend as the limit of tilted straight segments

is decomposed into segments of length 1, tilted with respect

to each other by a small angle 8, and one then lets 8 and 1

go to zero in such a way that

R=/liiO(l/8). (1)

In that case, if K=, ~(cl) is the coupling coefficient be-

tween the two modes a and b due to a single tilt of angle 8,

the coupling coefficient for the same modes per unit length

of the corresponding circular bend of radius R is

Ca,b= ,po [~-’%ml” (2)

In multimode hollow waveguides with high index walls,

the coupling coefficient K., ~ due to a discontinuity is, to a

good degree of approximation, given by the overlap in-

tegral [1]

JJi:.ib ds

‘“’b= [,,(Za)2ds]’’2[,,(Eb)2 ds]”2 ‘3)

where ds = dx dy and the integrals are calculated over the

cross section of the guide after the discontinuity: ~~ is the

transverse electric field distribution of mode a propagating

in the first secti~n, in t~e coordinate system (x, y) of the

second section; E. and Eb are the transverse field distribu-

tions of modes a and bin the second section. In the present

case of the discontinuity being a small angle 8 around the

y-axis, we have

(4)

TABLE I

COEFFICIENTS F,Cd, ~ FOR CIRCULAR Y-BENDS

b
TE

PQ.
TM

Pq

TE
~2,2 22 ,2

P’, q + P’q
( Y’_ j

2
w b’

bw

P’q(P2-P’2) Ppr(+ + ‘J )
TM

P’3q bw w b’

Our primary interest here is to study the effect of

waveguide deformations upon the TEPO modes, but we will

nevertheless evaluate the coupling coefficients for all pairs

of TE and TM modes. The relations necessary to carry out

the calculations are given in the Appendix. Table I lists the

expressions for the coupling coefficients C., b multiplied by

the function

FY=F
()

w

Pql P’q’ G

=;(P’-P’’)’($+$)’’’($+$)’”:.
(5)

The selection rules are that a y-bend couples only modes

with q = q’, and that p and p’ must have opposite parity.

Failure to satisfy these conditions leads to a vanishing

coupling coefficient (to first order in R– 1). One exception

to this rule is the case of self-coupling for which K.,. = 1–

O(R-2 ), which must be recalculated separately. ‘Ilk is

done with the help of (39) in the Appendix. It is found that

lKa,a(ti)l =1-

1 \w2’b2j

fSa 2

(-) A’

– for TE, + for TM (6)

from which it is meaningless to calculate C=,. from (2).

This result can be related to the expression for the quantity

B given in the appendix of [3], and it is found that the sign

convention for TE and TM modes presented there con-

tradicts (6). A check on the present choice of signs is

obtained by verifying the consistency of (6) with the ex-

pressions of Table I. This is done by expressing that all the

power incident on a tilt in a mode a must emerge from it as

the sum of the powers coupled into all other modes b,

including a itself. Thus we must have, to second order in 8,

~ lKa,~[2+[Ka,a\2=l. (7)
h+.

This relation has not been proven in general, but it has

been verified numerically for mode a being TE ,., thus

validating the choice of signs in (6).

In a rectangular metallic guide with b > w, the least

attenuated mode is TE ,., and the whole family of TEPO

modes has generally lower losses than the other TE modes
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TABLE II
VALUES OF G(p, p’)

1 2 3 4 5 6
P

1 0.889 0 0.071 0 0.019

2 0.S89 0.96 0 0.091 ,0

3 0 0.96 0.979 0 0.099

4 0.071 0 0.979 0.988 0

5 0 0.091 0 0.988 0,992

6 0.019 0 0.099 0 0.992

and the TM modes. The TEPO modes, and especially TE 10,

are therefore preferred for low-loss transmission in such

guides, and it is important to determine how their losses

are affected by deformations. For a y-bend, Table I and

the associated selection rules show that the TEPO modes are

only coupled to each other, the coupling coefficient be-

tween TEPO and TEP,O being given by

c
16 pp’

po, p’o = fi

(P2-#2)2 +’ p#P’” (8)

For a given p, this coupling coefficient is largest for

p’= p, a fact put in evidence by Table II in which values of

c(p, p’)=4 ‘p’
(p2_p,2)2 ‘CPO!P’0: &j P+p’

(9)

have been calculated for low values of p and p’ (the value O

is assigned when the parity rule is violated). For large n, it

can be shown that

so that an arbitrary TEPO mode is primarily coupled to its

two nearest neighbors, TEP ~ ,,.; this property even extends

to low values of p, as can be seen from Table II. The

situation is even simpler for TE,0 as it is primarily coupled

to a single other mode, namely TE20. This finding justifies

the assumption which was made elsewhere about the cou-

pling of TE,0 by a y-bend [ 1]. Having now at our disposal a

more accurate expression for C,o, ~o, we can reevaluate the

critical behding radius for y-axis bending for TE,0 [1]; we

now obtain

RC=0.83&.
A2

(11)

The numerical coefficient in this expression is close to

the value 1.18 which can be extrapolated from exact

numerical calculations [6] or obtained by a perturbation

technique [7]; it is closer than 4.6 or 0.61 arrived at by

other methods ([11 ] and [9], respectively). The two-mode
coupling approximation thus provides a satisfactory de-

scription of the additional loss suffered by the TE,0 mode

in a rectangular guide gently bent around they-axis.

The expressions of Table I can also be used to similarly

study the influence of a y-bend on the losses of higher

order TEPO modes ( p > 2). For such a mode, however, we

can no longer use the standard two-mode coupling theory

[1], since we have shown that TEPO couples almost identi-

cally to TEP+ 1,0and TEp _ 1,0. We must, therefore, consider
a three-mode coupling scheme wherein a mode of interest a

is coupled to two modes b and c via the coupling coeffi-

cients Ca,~ and C.,,, respectively; these last two modes,

however, are not coupled to each other, i.e., C,,. = O. This

coupling scheme is similar to that studied by Solymar [12].

In fact, we will look at this situation as a particular case

(N= 3) of the more general N-mode coupling scheme

where mode of interest 1 couples to modes 2,3,0 “ s,N,

while the latter modes are not coupled to each other. In

that general case the determinant equation for y, the

complex propagation constant of the eigenmodes of the

deformed guide, is

Y–YI iC1,2 iCl,3 ““”””” iC1, ~

iCl, z ~_y2 () . . . . . . 0
“.

iC,,3 o y–y3 - = o
“.

o

icl, N o. . . . . . 0 y–y~

(12)

where yi (i=l,. . ., N) is the propagation constant of the

i th mode of the straight guide. Equation (12) is equivalent

to

[ 1l+(y-y,)-l j (C,,k)’(y-yk)-’ H (y-yl)=o
kzz i=]

(13)

or

Y–Y]= j (C,,k)z(?’k-y)-’. (14)
k=z

In the case of mild deformations, we would expect the N

roots of this equation, which we denote by y,’, to differ very

little from their respective values for the straight guide, y,;

hence we let

y,’ = y, + (sZ (15)

where ISi I ~ Iy, 1. With that assumption we can calculate
each 8, as a small perturbation. For mode 1 in particular,

welety —yl=y{—yl=al, and

Yk–y=yk –y; =yk–yl–alzyk ‘Y1 (16)

which leads to

81= i (cl, k)2(yk–yl)-’. (17)
k=2

This result says that the change in propagation constant

of a mode of interest 1 due to a waveguide distortion which

couples 1 to modes 2,. . . , N, but does not couple the latter

to each other, is obtained by summing the contributions

due to 1 coupling to the other modes on an individual

basis. This derivation does not specify the type of deforma-
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tion, only that it is mild, and will be used later for circular

bends, twists, and certain helical deformations.

Coming back to the three-mode coupling case intro-

duced earlier, we find that the change in attenuation for

mode of interest 1, which is the real part of S1, is

(C,,2)2Aa2+, (Cl J2Aa3,,
Re(i$i) =

(ACi2,,)’+(A&J2 + (Aa3,J2+(A&J2

(18)

where

y]= al+ ifl’

Auj, k=al–ak

Abj,k=bl–bk- (19)

Similarly, the change in phase constant is

(C1,2)2A/32,1 ~ + (C1,3)2A/33,1
Im(81)=

(Aa,,1)2+(A~2,, )- (Aa,,, )2+( A&,)2

(20)

With modes 1, 2, and 3 corresponding to TEPO, TEP + 1,0,

and TEP _ ~,0, respectively, we find, using Table I and the

propagation constants in Appendix I, that

[
a~o’=Re(y~o)=aPO l+~(P)~

1
(21a)

where

A(P)=*
(p+l)’ _ (P-1)2 1b’++)’(p-+)’‘ ‘=1’2’3’”””

(21b)

Equation (21) happens to hold for p = 1 because the second

term of A( p ) vanishes and the two-mode coupling expres-

sion appropriate for that mode is recovered. Similarly, it is

found that

[

p~A(p) W4
6;O=1m(~~O)=BP0 1+ 8 —

1A2R2 “
(22)

The range of validity of (2 la) and (22) corresponds to R

being sufficiently large to avoid transition to the whisper-

ing gallery regime [5], i.e., R > 8w3/A2p2.

Calculation of a few values of A(p) shows that only

TEIO experiences an increase in both a and ~, whereas all

higher order modes experience reductions, the magnitudes

of which increase asp gets larger. These conclusions are in

qualitative agreement with the work of others [6], [7]. The

three-mode coupling analysis provides an insight into the

origin of the increase or decrease in loss due to a slight

y-bend. TE,0 is coupled to lossier TE20, and its loss can

only go up; on the other hand, for p >2, TEPO couples to

both lossier TEP+ ,,0 and less 10SSYTEP_ ,,., in such a way

that it experiences an overall decrease in loss.

Equations (21) and (22) can also be quantitatively com-

TABLE III
COEFFICIENTS FyCa, ~ FOR CIRCULAR X-BENDS

x ‘Epq ‘Pq
22,2 22 +,2

i
,2 2

TE qP
Pq ‘

+
~’, 2

w ‘1 ‘w;
2

TM
P,’

,’P(,2- CI’2) ~qq++ 2 <)

wb b w

pared to similar expressions found in [6]. Rewritten in the

present notations, these become

(23a)
[

(X; O=(KPOl+21x P)&
1

[
P;o=qlo l+p2Bp -& 1 (23b)

where

B(p)=
$(*-1) ‘=1273””” ‘23C)

As mentioned earlier, the signs of A(p) and B(p) are

the same for all values of p. Further investigation shows

that, although these two functions do not look anything

like each other, the ratio A( p)/B( p ) is within 1.5 percent

of unity for all values of p. It follows that the changes in

the phase constants given by the two methods (22) and

(23b) agree very well; on the other hand, the mode-cou-

pling method predicts a change in losses due to bending,

(2 la), which is just about half that predicted by the per-

turbation technique, (23a), which itself agrees with accurate

numerical calculations [6]. Interestingly enough, the dis-

crepancy is independent of any physical parameters, in-

cluding the index of refraction of the wall. This implies

that it remains even in the microwave region where the

usual expressions for the TE modes, used here to derive the

coupling coefficients, should constitute excellent approxi-

mations. The origin of the difficulty has been traced to the

standard mode-coupling formulation where it is assumed

that C is real [1], [3], [12]–[14]. In fact C has a small

imaginary part which leads to a doubling of the bending

losses, in agreement with the other theories. Since this more

accurate calculation requires extensive modifications to the

present formalism, it will be presented elsewhere.

The coupling coefficients for circular x-bends can be

deduced from those for y-bends by exchanging p with q, p’

with q’, and w with b. The resulting expressions of FXC. ~

are listed in Table III, where

The associated selection rules are that p = p’, and that q



MARHIC: MULTIMODE RECTANGULAR INFRARED WAVEGUIDES 675

Fig. 3. Geometry for studying bending around an arbitrary direction ~

in the x – y plane. The paratlel lines are equiphase lines for~m (25).

and q’ must have opposite parity. In particular, these rules

indicate that an x-bend will couple TE,0 to TE ~1, TE 13,

etc., as well as to TM,, i’ TM1 ~, etc. Even the first terms in

these families, TE1, and TM,,, are far lossier than the

low-order TEPO modes that were excited by a y-bend, and

this therefore indicates that an x-bend is going to be far

more dangerous for the TE,0 mode than a y-bend of

identical radius.

Consider now a general circular bend around an arbi-

trary direction in the x – y plane. The coupling coefficients

for such a bend can be calculated by the tilt method

utilized earlier, but with the exponential term in (4) re-

placed by

which indicates that the bend (tilt) considered is around

the direction parallel to the vector ~ of components ~Y = &

and VY= – 8. The coupling coefficients are then obtained

from (3), and the coupling coefficients per unit length of

bend by

(26)

the limit being taken subject to the conditions

where R is the total radius of the bend around ~ with the

x-axis (Fig. 3). For a # b, C., ~ is of order R– 1. Expanding ~

to the same order and carrying out the calculation of C., ~,

it is found that the latter is simply the sum of two separate

contributions, respectively, due to a y-bend of radius R.Y

and an x-bend of radius RX. Since the selection rules for x-

and y-bends are mutually exclusive, it is clear that the x

and y components of a general circular bend respectively

couple any T.EP~ or TMP4 mode to two distinct, nonover-

lapping, fanuhes of modes. Hence, each coupling coeffi-

cient is either a coefficient obtained from Table I, or from

Table III, or it vanishes. Thus, one really never has to add

two different coefficients, but merely to choose the ap-

propriate coefficient in the tables. This implies that when

calculating the extra loss of a TEP~ or TMP~ mode due to a

general circular bend, as obtained from (17), we find

Re(~pq)= ~pq(R.) -2+Bpq(R,)-2
—— (AP~cos2@ + BP~sin2@)R-2 (28)

where AP ~ and BPq are constants which depend on the

mode under study. Even though it is, in general, difficult to

calculate these coefficients explicitly, some simple conclu-

sions can be drawn from the form of (28). In particular, we

can compare the effect of @ upon bends of given R. It is

clear that if AP~ < BPq, the least attenuated bend will be

obtained for @= O, i.e., for a y-bend; conversely an x-bend

will yield minimum attenuation if APq > BPq. If Apq = BPg,

the excess loss will be independent of $. In the case of

TE ,., AIO results primarily from coupling to TE20, whereas

B,. is mostly due to coupling to the lossier modes TE1, and

TM,,, so that BIO>AIO, and a y-bend is necessary to

minimize the losses for a given bend radius R. This is a

fortunate result since rectangular metallic waveguides de-

signed for low-loss transmission of infrared radiation have
b>> & and thus strongly resist being bent around the x-axis

for mechanical reasons. This lack of flexibility in one

direction, which might be viewed as a hindrance from a

purely mechanical standpoint, thus turns out to be a bless-

ing in disguise: it provides a natural resistance to the

higher losses which would otherwise be associated with

x-bends.

III. TWISTS

Another situation where modes are coupled with con-

stant coupling coefficient per unit length is the case where

the z-axis of the guide remains straight, but its cross

section rotates at a constant angular rate per unit length r

along that axis, giving the guide the appearance of a

corkscrew; we refer to this deformation as a twist. We can

calculate the coupling coefficients per unit length of twist

by approximating this structure by a series of straight

sections of length 1 rotated by a small angle c with ‘respect

to each other, calculating the coupling coefficient K:, ~(c)

between two such sections from (3) and taking the ap-

propriate limit subject to c/1= ~. Specifically, the field ~~

of mode a propagating in one section is~elated to the field

of the same mode in the next section E. by a rotation of

angle c around the z-axis (Fig. 4). In other words

[ ][

(JZ)x = Cosc Sine (Ea)x
(E;), — sin c 1[ ]COS6 (E=)v “

(29)

Hence

+sin~~f[(~.).(E,)y-(E.),(~,).]dxdy

‘~/j[(E.)x(E~)Y-( E.)Y(E~)x]dxdy (30)
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Fig 4. Geometry to calculate the coupling coefficients resulting from a
twist around the z-axis. The primed and unprimed coordinate systems
correspond to the waveguide sections before and after the discontinuity,
respectively.

TABLE IV

COEFFICIENTS LCa, ~ FOR TWISTS AROUND THE Z-AXIS

\’1
I I

‘E

1

2 ,22,2
P’q’ Pq -qP

TM
P’q’ (+ +$) P’q’wb o

w

since the coefficient of cos c vanishes by orthogonality of

modes u and b (we do not calculate the self-coupling

coefficient here, i.e., a # b). Using (30) in (3), and the

appropriate expressions from the Appendix, the coupling

coefficients per unit length are obtained by

Ca, b= ,l;rno [l-’K:, b(6)], c/l=r. (31)

The results are listed in Table IV in the form of the

product LCa, ~, where the function L is defined by

IF($+$)($+$)~q,p/q(T)= ‘2L=L

.(pz-pfz)(qf~-qz)$. (32)

The selection rules are that p and p’ must be of opposite

parity, and that q and q’ must also be of opposite parity.

These rules are not as restrictive as in the case of circular

bends, and as a result it is difficult to look at this situation

as a two- or three-mode coupling scheme because of the

large number of TE and TM modes being coupled to. Even

for TE,0 it is difficult to ascertain which modes make the

largest contributions to the increase in loss.

We can nevertheless draw some qualitative conclusions

about twists. Since all the coupling coefficients are propor-

tional to ~, (17) shows that the increase in loss due to a

twist is proportional to ~2; this quadratic behavior has
been observed in practice [15]. A general feature of mode-

coupling theory is that in the limit of weak coupling the

eigenmodes of the perturbed guide are very similar in

structure to those of the straight guide. For a twisted

rectangular guide, this means that the eigenmode close to

TE IO will be very similar to the latter, with the electric

vector nearly parallel to the long side of the guide cross

section at any location along z; in other words, the direc-

tion of the electric field will rotate at the same rate as the

guide. This property has also been observed experimentally

[15].

IV. HELICAL DETONATIONS

Thus far we have considered separately circular bends

and twists which may occur in the course of the utilization

of flexible rectangular metallic waveguides for the infrared.

We now study deformations which are combinations of

circular bends and twists, namely helical deformations, for

which the mode-coupling coefficients are simply the sum of

those attached to the elementary deformations [16], which

have been calculated in the preceding sections. For a guide

with b > w, we have seen that x-bends are undesirable, and

also difficult to obtain in practice, and we therefore now

restrict the discussion to structures obtained with y-bends

and twists only, which we refer to as a natural helical

deformation (Fig. 5).

For such a helical structure, then, the mode-coupling

coefficients C., ~ are obtained by summing the elements of
Tables I and IV, where R and ~ now take on the signifi-

cance of the radius of curvature and the torsion of the

helix, respectively. These are related to the parameters d

and e of the helix (Fig. 5) by

R=d2+e2

d
and ~.~

d2+e2”
(33)

Since the selection rules associated with Tables I and IV

are incompatible, the coupling coefficient due to a helical

deformation for any mode a to any other mode b # a can

simply be read from one of these tables, and is never the

sum of two nonvanishing terms, one from each table.

According to (17) and this remark, then, the increase in

loss Re (6 ~) of any mode 1 due to a helical deformation can

be put in the form

Re(81)= CR-2+ D~2=CR-2[l+E(R~)’] (34)

where C, D, and E = D/C are constants related to the

characteristics of the coupled modes. Thus we conclude

that, for a natural helical deformation, the loss increase is

the sum of terms proportional to the squares of the curva-

ture and the torsion, in agreement with the dependence

proposed by other workers [8]. The form of this equation is

also interesting in that it says that the excess loss of the

helical guide is that of the same guide with a circular bend

only (CR – 2 ), times a factor of the form 1+ E( R r )2. This

statement is virtually identical to that made for helical

whispering gallery guides in a study where the significance

of the dimensionless quantity R ~ was brought out [17], and

where it was found that E = 1 for TE polarized waves in

metallic guides in the infrared. Due to the large number of
modes involved in the mode-coupling description, and to

the uncertain expressions for their losses, it is not possible

to derive similarly simple expressions in the present con-

text, even for TE,0.
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Fig. 5, Natural helical bend of a rectangular guide. (a) General view;

the zo-axis is along the axis of the helix. (b) Side view of the helix,

defining d and e.

V. DISCUSSION

The influence of helical deformations upon the losses of

the eigenmodes of rectangular metallic waveguides has

been studied by means of multimode coupling theory. Such

deformations result from the combination of elementary

rotations about the local x, y, and z axes of the guide. The

coupling coefficients between all propagating straight guide

modes due to these individual orthogonal rotations have

been calculated, and the corresponding selection rules indi-

cate that the following remarkable properties hold.

1) Any particular mode a is coupled by the three types of

orthogonal rotations to three distinct, nonoverlapping,

families of modes b. Thus, in the case of an arbitrary

helical deformation, the coupling coefficient between two

particular modes a and b is not a‘ linear combination of

three nonzero coupling coefficients, but reduces to just one

of them.

2) If a mode a is coupled to two modes b and c by an

elementary rotation about one of the three axes, then b and

c themselves are not coupled by that rotation. This prop-

erty is also valid for coupling by deformations composed of

elementary rotations about two orthogonal axes, as en-

countered in general circular bends and natural helical

deformations. It ~an readily be seen by comparing the

selection rules, however, that this does not hold for defor-

mations made up of all three elementary rotations. For

general helical deformations, then, one could not use (12)-

(17).

When applicable, these properties greatly facilitate the

calculation of excess loss of modes due to helical deforma-

tions. Property 2) shows that we are then in the conditions

of applicability of the simple multimode coupling theory

developed here to deal with situations which cannot be

adequately covered by the usual two-mode” coupling the-

ory, so that the excess loss can simply be obtained from

(17). Property 1) then simplifies this calculation since the

various coupling coefficients entering (17) can simply be

read from Tables I,” III, or IV without further combination.

This method can lead to expressions for the excess loss

whenever accurate formulas exist for the losses of the

principal modes being coupled by the deformation. This is

the case for TEPO modes in a guide deformed by a y-bend

only, and we have derived approximate analytic expres-

sions for the excess loss in this situation and compared

them to other published expressions. We could not, how-

ever, carry out similarly detailed calculations for natural

helical deformations, because of lack of accuracy of the ,

attenuation constants of some of the prominent modes;

progress in this direction will thus require refinements of

the calculations of the attenuation constants of TEP~ ( q > O)
and TMP~ modes of straight rectangular infrared guides.

Nevertheless, properties 1) and 2) allowed us to study

qualitatively the excess loss under natural helical deforma-

tions and general circular bending; in the latter case it was

found that, for typical infrared waveguide configurations,

minimum excess loss is fortunately obtained by mechani-

cally favored deformations.

This study furthers the understanding of the effect of

deformations on the losses of multimode rectangular

metallic waveguides. Although the primary incentive for

this work was the development of hollow guides for C02

laser radiation, the results presented here should find ap-

plications throughout the rapidly developing mid-infrared,

far-infrared, and submillimeter regions of the electromag-

netic spectrum.
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APPENDIX

Transverse electric fields in rectangular guides:

TEP,

E.= ~ COS~ si” ‘~y >w
p=o, l,2,. ...

Ey= – @ simp~x cos~
w w b’

q=o, l,2,. ...

p+q=o. (35)

TMP~

EX z GCOS* sinm
w w b’

p=l,2,. ...

EY=~sin*cos~, q=l,2, ..,.
w

(36)
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Useful integrals (low-order expansions in powers of u =

us/A):

n+m

nIIt
I(7f, m,a,u)=Jasin—

mIIt i211c7t
sin — —(it (37)

o a a ‘A

_ 8a nm— if n, m of opposite parity
IIi (n2_m2)2u’

=(9(U2), if n, m of same parity

nllt
Y(n, m,a, u)=jacos=

milt ~i2110t
Cos — ~ dt (38)

o a

_4a n2+m2 ~
if n, m of opposite parity

‘fi (n2-m2)2 ‘

=O(U2), if n, m of same parity.

Propagation constants (b, ws A):

TEPO

p2A2

( %)
Ypo=~po +~Bpo=~Re(~–l)+i Bo–

(40)

where v is the index of refraction of the wall, /30= 211 /?t,

and

[1]

[2]

[3]

[4]

A is the freespace wavelength.
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